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ABSTRACT

This paper presents three distinctly different case studies to assess the personal mobility system
that results from combining:

*  The “Mobility Internet”"
e Self-driving/driverless vehicles
* Shared vehicle systems
* Specific-purpose vehicle designs
* Advanced propulsion systems

Results indicate that this transformational mobility system:

* |s capable of supplying better mobility experiences at radically lower cost under a wide
range of circumstances

* Offers substantial sustainability benefits through improved roadway safety, reduced
roadway congestion, increased energy efficiency, reduced emissions, improved land use
and enhanced equality of access.

Models that generalize the relationship between the characteristics of geographical regions and
the cost and performance of coordinated/shared/driverless mobility systems are also provided.

' The term “Mobility Internet” was first coined in William J. Mitchell, Christopher Borroni-Bird, and Lawrence D.
Burns, Reinventing the Automobile: Personal Urban Mobility for the 21% Century. The MIT Press, 2010. The
“Mobility Internet” does for the movement of people and goods what the Internet has done for the movement
of information by coordinating large amounts of real-time spatial and temporal connectivity and infrastructure
data.




INTRODUCTION

Global roadway transportation has evolved to an enormous scale since the first motorized
vehicle was invented over a century ago. Today, nearly a billion cars and trucks move people and
goods along the world’s roadways and consumers spend trillions of dollars each year on
personally owned vehicles (including the costs of fuel, depreciation, financing, insurance, taxes,
parking, and time) to experience the resulting mobility benefits.

The growth of automobile transportation has occurred with virtually no disruptive change to the
fundamental system conceived of by Karl Benz and popularized by Henry Ford. While this
mobility system provides considerable personal freedom for those who can afford it and enables
substantial economic activity, it is associated with serious side effects in terms of safety, energy,
the environment, land use, traffic congestion, time use and equality of access.

In this context, a wide range of technology and business enablers are emerging that, when
combined in innovative ways, promise to transform the way people and goods move around and
interact economically and socially. Roadway transportation is now as ripe for transformation as
the telecommunications, photography, computer, media, television and pharmaceutical
industries were over the past two decades.

THE OPPORTUNITY

It is now possible to supply better mobility experiences at radically lower cost to consumers
and society. This opportunity results from innovatively combining five emerging technology and
business enablers:

e The “Mobility Internet” does for the movement of people and goods what the Internet
has done for the movement of information by coordinating large amounts of real-time
spatial and temporal connectivity and infrastructure data.

e Self-driving/driverless vehicles operate without human control enabling passengers to
use their time as they please (e.g., texting, talking on the phone, eating, or watching a
movie) without endangering themselves or others.

e Shared vehicles are used by several people throughout the day rather than being used
exclusively by single individuals and being parked 90 percent of the time.

*  Specific-purpose vehicle designs are tailored to the type of mobility they supply and the
number of occupants they serve, making them more energy-, space-, and cost-efficient
compared to general-purpose vehicles.

* Advanced propulsion systems move cars and trucks using alternative energy sources
and power systems in addition to oil and combustion engines; they typically entail
electric drive, electric motors and electronic and digital controls.

Individually, each of these building blocks promises incremental improvements over today’s
roadway transportation services. When combined in innovative ways to enhance the mobility
experiences of consumers, the improvements are radical and the changes are transformational.



Transformational Opportunity

The “Mobility Internet”

+
Self-Driving/Driverless Vehicles
+
Shared Vehicles
+
Specific-Purpose Designs
+
Advanced Propulsion

Better Mobility Experience at
Radically Lower Cost

To illustrate the opportunity, consider the following three scenarios:
Scenario #1:

Joe is a typical car owner living in a U.S. city such as Ann Arbor, Michigan. He drives his car about
30 miles per day at a cost of about $0.60 per mile. These costs include depreciation, insurance,
gasoline, maintenance, license fees, finance charges and taxes. He also spends money on
parking and must use 60 to 90 minutes of his time each day focused on driving his car to and
from work, and to access shopping, school, recreational and community activities. He has a busy
schedule and his time is valuable.

Scenario #2:

Bob and his wife live in Babcock Ranch, a new eco-city in Southwest Florida. Before moving to
Babcock Ranch, they were a two-car household, spending about $16 per day to own each
vehicle, with additional operating costs depending on how many miles they drove each day.
Now that they have moved to Babcock Ranch, many of their daily activities (work, grocery store,
health club, golf course) will be located within the town. They are wondering if it makes sense to
continue to own two cars.

Scenario #3:



Anne lives in Manhattan with her husband and two children. Anne’s family sold their car when
they moved to Manhattan due to the cost and hassle of parking. Instead they use the wide
range of public and shared transportation options available. They use the subway or buses daily
on their way to school and work, and use yellow taxis when they need to get somewhere faster
or are unable to use public transportation. All in all, each adult spends an average of $200 per
month for transportation via bus, subway, and yellow taxi. Although Manhattan has an excellent
public transportation system, there are limitations. During rush hour, buses and trains are
uncomfortably crowded. During non-rush hours, wait times for buses can be long. Traveling
north south is easy, but going cross-town is either time-consuming (2 to 3 buses and subways)
or expensive (yellow taxi). Anne and her family currently organize their schedule around the
constraints of the public transportation system.

NEW MOBILITY SYSTEM

Now consider a new mobility system that can improve the experiences of Joe, Bob, and Anne.
This new mobility system combines recent developments in driverless vehicle technologies with
the emerging “Mobility Internet” that can coordinate the movements of these vehicles through
space and time.

The new mobility system works as follows:

e Optimally sized shared fleets of driverless, coordinated, specific-purpose vehicles are
available.

e Customers request a ride using an app on their smartphone.

* An autonomous vehicle arrives at their door within minutes and transports them
directly to their destination.

e During the trip, the customer can use his/her time as desired (reading, eating, talking on
the phone, watching a movie, sending email).

* Upon arrival, there is no need to park the vehicle, because it continues on to a nearby
location to pick up another rider.

In Ann Arbor, Joe is able to spontaneously request a ride using an “app” on his smart phone. An
autonomous vehicle arrives at his door within minutes and transports him directly to his
destination. During the trip, Joe uses his time as he pleases. Upon arrival, he doesn’t need to
park the vehicle, which continues on to a nearby location to pick up another rider.

At Babcock Ranch, Bob and his wife have spent the day golfing. They used the new mobility
system to get to and from the golf course, without having to use their personally owned cars. At
the weekend, when they want to visit friends who live outside Babcock Ranch, they can still use
their personally owned car.

In Manhattan, Anne needs to get across town to a doctor’s appointment or a business meeting.
Instead of trying to figure out whether she has time to take the bus or is willing to spend money
on a yellow taxi, she requests a ride using an “app” on her smart phone. An autonomous vehicle
arrives at her door and transports her directly to her destination.

HOW MUCH DOES THIS SERVICE COST TO SUPPLY?
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Remarkably, initial estimates indicate that the cost to supply this service to Ann Arbor
customers like Joe could be about $0.15 per trip mile. This 75 percent cost reduction is a result
of:

e  Better capital utilization: Far fewer shared, driverless vehicles are needed to provide
the same level of service as personally owned vehicles, and vehicles tailored for 1-to-2
passenger trips cost less than conventional cars.

e  Better capacity utilization: During peak travel times, the shared vehicles are occupied
more than 90 percent of the time, compared to Joe’s car which is in use less than 5
percent of the time; and

*  More efficient energy use: When Joe travels alone or with one other person, the 1-to-2
passenger, purpose-designed vehicle that they ride in weighs 75 percent less than a
conventional car, thereby using significantly less energy.

In addition to radically lower cost, Joe’s mobility experience is significantly better in terms of
safety, convenience, time use and peace of mind. In fact, this new mobility experience is so good
and meets his needs so well that Joe no longer owns a car.

Similarly, at Babcock Ranch, initial estimates indicate that the new mobility system can be
provided for $4 per day per customer, or less than $2 per trip. Bob and his wife enjoy the
convenience of this mobility service so much that they have sold their second car.

Finally, in Manhattan, the new mobility system could operate as an alternative mode of
transportation, competing with both yellow taxicabs and public transportation. Yellow taxicab
fares are about $5 per mile, with the cost of providing the service about $4 per mile. Initial
estimates indicate that a fleet of shared, driverless, conventional vehicles would cost about
S0.50 per mile to operate. This presents an appealing option in the current portfolio of mobility
services. Compared to the bus or subway, shared, driverless vehicles would give Anne and her
family superior comfort, convenience, and route flexibility. Compared to yellow taxicabs, they
would be more convenient and less expensive as a result of reduced empty miles, energy
efficiency, and reduced labor costs.

SYSTEM MODELING

Analytical and simulation models were used to arrive at these conclusions. These models
estimate the cost and performance of shared fleets of driverless vehicles serving trips within a
region, and compare these estimates to current cost and performance.

Consider a region such as those in our scenarios where most of the trips for work, shopping,
recreation and other purposes are intra-regional. We assume that a shared, driverless vehicle
fleet operates within this region in the manner described above. The fleet operator optimizes
the assignment of vehicles to customers so that low customer wait times are achieved and
operational costs are minimized. (Note that while our discussion focuses on a single vehicle fleet,
this doesn’t preclude the possibility that there may be several competing vehicle fleets in an
area). Since customers can spontaneously request a vehicle as described above, the operator
must control the assignment of vehicles to customer trip requests in real-time. When Joe
requests a shared vehicle using his smart phone app, the fleet operator will have information on
Joe’s current location, destination, and vehicle type needed. We assume Joe needs the vehicle
immediately, since this would be the hardest type of travel to accommodate. (If Joe wants to
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schedule trips ahead of time, the shared fleet could certainly handle this, but this would only
reduce the costs we’re calculating here).

As shown in Figure 1, upon receiving this trip request, the fleet operator immediately
determines which vehicle in the fleet could reach Joe first. The operator knows (via the Mobility
Internet) the current location and state of all vehicles, can estimate when those vehicles
currently serving trips will complete them, and can estimate when every vehicle could
potentially reach the new customer’s location. The closest vehicle could be one that is currently
idle, or as shown in the figure, it could be a vehicle currently serving another trip. In either case
the assigned vehicle travels to the new customer (as shown) as soon possible. Through the
Mobility Internet, the operator keeps Joe fully informed about the assigned vehicle’s current
location and expected arrival time. Note that assigning the closest vehicle to a customer not
only minimizes wait time, but also approximately minimizes empty vehicle miles, an important
part of operating costs. Also, if trips are scheduled ahead of time or if the fleet operator can
forecast travel patterns, then customer wait time could be reduced by pre-positioning the
vehicles where the operator thinks (or knows) they will be needed.
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Figure 1. Shared, Driverless Fleet Assignment Decisions

We want to estimate the cost of a shared, driverless vehicle system. The primary costs are the
cost of owning vehicles and the cost of operating them. Ownership costs include vehicle
purchase (depreciation), finance, registration, and insurance costs; operating costs including fuel,
maintenance, and repair costs. These operating costs depend not only on the length of trips
served by the fleet, but also on the empty distance vehicles travel in getting to customer
locations.

We also must estimate the customer performance of the system. In particular, we need to
calculate how the shared vehicle fleet size (number of vehicles) and assignment decisions
impact customer wait time from when they request a vehicle until one arrives at their location.
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To provide customers with a better mobility experience than they currently have, customer wait
times for a vehicle need to be short. The definition of short depends on the situation. Joe’s and
Bob’s alternatives are usually their cars, which are immediately accessible when they are home,
but may have substantial walk time to access when parked at a shopping center or other
location. Anne in Manhattan usually has substantial walk and/or wait time when accessing
public transportation or cabs. We'll estimate shared vehicle fleet costs assuming average wait
times from calling for a vehicle until it’s arrival should be two minutes or shorter. This is a fairly
stringent standard that will lead to conservative cost estimates.

To estimate system performance and cost, we develop relatively simple models that capture the
key variables that impact them. These are: the area of the region, the mean trip length, the
mean trip rate and how this varies throughout the day, mean vehicle speed, the average fixed
time needed per trip, the fleet size, and vehicle cost parameters. Using queueing and network
modeling approaches we develop an analytical model to relate these key variables to shared,
driverless vehicle fleet performance and cost. The Appendix develops this model, shows the
results of validating it with simulation models, and presents results of applying the model to the
three case studies and to more general situations.

Results for the three case studies are described in the following sections.

ANN ARBOR CASE STUDY: COST COMPARISON TO PERSONAL VEHICLE OWNERSHIP

To compare the potential benefits of a shared, driverless vehicle fleet with personally-owned
vehicles, a case study was done for Ann Arbor, Michigan. Travel patterns and the cost of
personal vehicle ownership were analyzed to determine whether such a system could provide
residents with a less expensive and more convenient way of getting around.

Ann Arbor has a population of 285,000 and covers an area of 130 square miles. Ann Arbor was
selected for the case study because it is representative of other small to medium-sized cities in
the United States, based on data from the 2009 National Household Travel Survey (NHTS). The
other cities used in the comparison were: Austin, Texas; Orlando, Florida; Rochester, New York;
Sacramento, California; and Salt Lake City, Utah. Although the population of Ann Arbor is smaller
than that of the other cities (which range from 650,000 to 1.5 million), the travel data are very
similar, including: average trip time, average trip length, average trips per vehicle, average
vehicles per person, average vehicle occupancy, and average vehicle usage. When the data were
compared, vehicle usage patterns were found to be remarkably consistent between all six cities.
The absolute size of a shared, driverless vehicle fleet would vary depending on the population
and area of each city. However, because the travel data for the cities is so similar, the costs per
consumer per day would be nearly the same as for Ann Arbor. The estimated cost savings per
consumer per day would therefore hold as well.



Ann Arbor, Michigan

* 285,000 people
* 130 square miles
* 200,000 personally owned vehicles
* 740,000 trips per day
— 528, 000 internal trips (<70 miles)

* Average trip
— 8.3 miles
— 16.8 min
— 30 mph
— 1.6 people

* Vehicles used an average of 67
minutes/day (5%)

Source: 2009 National Household Travel Survey data for Detroit-Ann Arbor-Flint area

Methodology

To evaluate whether there is consumer value to be gained by operating a shared, driverless
vehicle fleet in Ann Arbor, the following methodology was used:

* Obtained travel data for Ann Arbor, including number of trips per day, average trip time,
average trip distance, average trip speed, and average number of passengers.

* Used queuing, network, and simulation models to estimate how a system of shared,
driverless vehicles would perform in meeting the demand for daily trips within Ann
Arbor.

* Determined the number of shared, driverless vehicles needed to ensure adequate
coverage and acceptable wait times during peak periods.

* Once the fleet size was known, available cost estimates for owning and operating mid-
sized vehicles were used to estimate the cost of providing mobility services.

* Finally, the estimated cost of providing mobility services was compared to the cost of
personal car ownership.



Trip Data for Ann Arbor

In 2009, Ann Arbor residents owned a total of 200,000 passenger vehicles. According to the
National Household Travel Survey® these vehicles were driven for 740,000 trips per day, for an
average of 3.7 trips per vehicle per day. Each trip averaged 8.3 miles and took 16.8 minutes at
an average speed of 30 mph. The average number of occupants per trip was 1.6 and vehicles
were in use a total of 67 minutes per day on average (about 5 percent of the time).

A shared driverless fleet would most likely compete for trips taken within the Ann Arbor urban
area. The analysis therefore focused on the 120,000 vehicles that were driven less than 70 miles
per day. These vehicles were responsible for 528,000 trips per day, for an average of 4.4 trips
per vehicle per day. These internal trips averaged 5.8 miles in distance with 1.4 occupants.

Determining Shared, Driverless Fleet Size

To determine the size of the shared, driverless fleet that would be needed to serve the internal
trips taken by the Ann Arbor community, queuing, network, and simulation models were used
to estimate system performance. Results indicate that the same number of internal trips could
be provided by a drastically reduced fleet size. The size of the shared, driverless fleet would vary
depending on the acceptable wait time for consumers. For example, with a fleet size of 18,000
vehicles, consumers would expect to wait less than one minute for a vehicle to arrive, and the
vehicle fleet would be utilized 70 percent of the time on average during daytime hours
(between 7am and 7pm).

Ann Arbor Case Study:
Customer Wait Time is Short, Empty Miles are Low

Shared Vehicle Fleet Size Impact on Ave.

Customer Wait and Empty Vehicle Miles * Oneshared fleet serves all
0.7 1 e - 0.60 120,000 customers who currently
\ Peak use their car < 70 miles/day
067 “0s0 * Shared fleet provides almost
\ instantaneous access to a vehicle
05 1 ' Customer with a fleet of only 15% of the
\ Wait Time - 0.40

number of privately owned

804 - . Vvehicles that would have been
é 0302 used for these trips

03 1 * Shared fleets increase total

0.20 vehicle-miles due to the
0.2 - repositioning of empty vehicles
o1 0.10 - In widespread use, however,
: Empty Vehicle Miles/Trip the empty mile cost would be
small
0.0 T T T 0.00
13,000 15,000 17,000 19,000 21,000

Fleet Size

2us. Department of Transportation. 2009 National Household Travel Survey. Data for Detroit-Ann Arbor-Flint area.
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Potential Cost of a Shared, Driverless Fleet
Cost Data

Table 1 shows the cost parameters used for determining the overall cost of operating a shared,
driverless fleet. The costs assume that medium-size sedans are used in this fleet.

Table 1. Cost Parameters for Driverless Vehicles in a Shared Fleet
(all costs are per vehicle).

Ownership Costs:

$25,000 for vehicle plus
$2,500 for driverless
technology/250,000 lifetime
miles = $0.11/mile®
$27,500/vehicle * 5%/yr

Depreciation®

Financing interest cost = $1,375/yr.
Insurance 53,000/yrd
Registration, taxes $600/yr”
Operating Costs:
gas $0.15/mi°
maintenance & repair $0.05/mi®
Overhead costs (wireless
communication, information $1,000/yr

system, advertising costs)

’Depreciation is impacted by time in service, as well as miles.
Since vehicles in a shared fleet are driven many more miles than
a typical privately owned vehicle, vehicle life is determined
much more by miles driven than time in service, so it makes
sense to calculate fleet depreciation costs as a function of
mileage.

°AAA, 2012 Your Driving Costs: How Much Are You Really Paying
to Drive? - costs for a medium sedan.

‘New York City taxis based on data from Schaller Consulting, The
NYC Taxicab Fact Book (2006) would average between 200,000

and 300,000 miles before being replaced.
dAssume 3-4 times the rate of that for a privately owned vehicle.

Ownership costs are made up of depreciation, financing, insurance, and registration and taxes.
Depreciation costs include the cost of the vehicle and the components enabling driverless
control. These costs are depreciated on a per-mile basis due to the very high mileage that fleet
vehicles accumulate, which means that their life in years is much less than that experienced by
personally owned vehicles. The depreciation calculation assumes that the vehicle has no value
at the end of its life, a very conservative assumption. Finance costs are estimated as the
opportunity cost for using the money spent on vehicles; i.e., what could be earned by investing
this money in alternative ways.
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Operating costs include fuel, maintenance, repair, and overhead costs. The first three costs are
those used by the AAA for medium sedans. Overhead costs are essentially the costs of managing
the fleet. These are expected to be on the order of $1,000 per vehicle per year.

Overall fleet costs can be calculated based on the total number of miles that fleet vehicles travel
(loaded and empty) and the number of vehicles in the fleet. As shown below these costs range

between $0.39 and $0.41 per trip-mile depending on the fleet size for serving Ann Arbor
internal trips.

Ann Arbor Case Study: Shared Fleet Costs

Shared Vehicle Fleet Size Impacton

System Cost
$0.50 - o
* Costs expressed per trip-mile
(e.g., loaded mile) served
$0.40 - _’/m;( » Graphshows how costs change
with the fleet size serving Ann
Arbor
$0.30 - . .
é * Increasing fleet size increases
s Operating Cost ownership costs, but operating
'g $0.20 - costs are nearly unchanged
a
g Ownership Cost * With an 18,000 vehicle fleet
© overall costs are $0.41/trip-mile.
$0.10 -
$0.00 \ \ \ ‘
13,000 15,000 17,000 19,000 21,000
Fleet Size

Results also indicate that economies of scale are reached quickly. The analysis looked at what
the vehicle fleet size, wait time, and cost would be if the geographical area remained the same,
while the number of participating consumers decreased. Having enough vehicles to keep
customer wait times at an acceptable level could potentially be very expensive if the number of
customers is too small. Analyses showed, however, economies of scale are reached in Ann Arbor
at an average daily trip rate of 1,000 trips per hour. At this trip rate, the average total cost per
trip-mile is $0.45. For trip rates lower than this, costs per trip-mile increase significantly. As trip
rates increase above this, costs continue to fall, but at a very slow rate. The benefits of shared,
driverless fleets can therefore also be achieved for consumer groups with niche interests.

12



Ann Arbor Case Study

Scale Economies are Reached Quickly
Impact of Varying Trip Rate

L ——— $1.00 _
- Peak period cap. utilization * Fleetsized so ave. customer
90% /.' $0.90 wait in peak period < 2 min.
()
= lus a 10% vehicle contigenc
80% I $0.80 S P ? gency
I Ave. daytime cap. utilization 2« Scaleeconomies in operatinga
c 70% $0.70 &=
o /" 5 shared fleet are reached
E 60% $0.60 quickly — cost per trip-mile
§ r § decreases very slowly for ave.
9 0.5 ; ;
> 50% k $0.50 v trip rates > 1,000 trips/hour
.G . %
§ 40% Shared fleet total cost $0.40 B * Benefits of shared fleets can
© 30% $0.30 5 be achieved for smgller pools
S of customers needing
20% $0.20 % specialized vehicles tailored to
= their needs.
10% $0.10
0% \ ‘ ‘ ‘ $0.00
0 10 20 30 40 50

Trip Rate (000's of Trips/Hour)

Cost of a Shared, Driverless Fleet vs. a Privately Owned Vehicle

AAAZ annually estimates the cost to individuals of owning and operating automobiles. For 2012,
they estimate that a medium sedan driven 15,000 miles per year will cost $0.59 per mile. At this
usage rate, two-thirds of this cost is ownership cost (full-coverage insurance, license,
registration, taxes, depreciation, and finance charges). The remaining one-third is operating cost
(fuel, maintenance, and repairs). For a shared fleet of 18,000 vehicles serving all internal trips in
Ann Arbor, the cost per trip-mile is $0.41, 31 percent less than the average cost of a privately
owned vehicle.

Note that, based on 2009 data from the National Household Travel Survey (NHTS), the average
light vehicle (car, SUV, or pickup truck) is driven about 11,600 miles per year. Seventy-four
percent of vehicles are driven less than 15,000 miles per year and per-mile vehicle ownership
costs increase as the average miles driven decline. The AAA cost estimate increases to $0.75 per
mile if the vehicle is driven 10,000 miles per year, which is approximately the median annual
mileage for a vehicle.

Cost Savings from Purpose-Built Vehicles
Additional cost savings can be achieved in both energy consumption and vehicle ownership if,

instead of a fleet of general-purpose vehicles, the fleet consists of multiple vehicle designs that
are purpose-built for the types of trips taken. Assuming that driverless technology can be

3 AAA, 2012 “Your Driving Costs: How Much Are You Really Paying to Drive?”
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developed to the point that vehicles will not crash, small electric vehicles for carrying 1 to 2
occupants in urban areas can be designed to be much lighter than current general-purpose
vehicles. This will greatly reduce vehicle cost and improve vehicle fuel efficiency. According to
NHTS data, 90 percent of vehicle trips taken within the Ann Arbor region carry 1 or 2 occupants;
only 10 percent carry 3 or more occupants. A shared, driverless fleet comprised of a
combination of mostly smaller vehicles purpose-built to carry 1 to 2 occupants, and a much
smaller number of medium-sized vehicles to handle larger groups, would have significant cost
advantage over a fleet solely consisting of medium-sized vehicles.

To estimate the cost of a fleet comprised of two vehicle types, we use the cost parameters in
Table 2. The first cost column is the same as Table 1; the vehicles serving groups of three or
more are gasoline-powered medium sedans. The second cost column adjusts these costs for a
fleet of low-cost, lightweight, electric vehicles, purpose-built for 1 to 2 occupants. We assume
that these vehicles weigh 800 to 1,000 pounds, about one-fourth the weight of the typical
medium-sized sedan. Vehicles that are one-fourth the mass can be estimated to cost
approximately one-fourth to purchase. Therefore, $25,000 divided by 4, plus $2,500 for the
driverless technology, yields a vehicle cost of about $9,000. We assume that all ownership cost
categories are reduced proportionally to this reduction in vehicle cost.

The reduced mass combined with improved energy efficiency from electric drive results in one-
tenth the energy consumed.” If we assume that they are 10 percent of the fuel cost for
conventional medium-sized vehicles, fuel costs for these smaller vehicles would be about $0.02
per mile. We assume that maintenance and repair are reduced proportionally to vehicle cost.
Overhead costs are the same for both vehicle types.

Table 2. Cost Parameters for Two Vehicle Types Used in a Mixed Vehicle Shared Fleet
(all costs are per vehicle)

Conventional Medium-Sized
Sedan serving 3-5 person
trips

Small, Electric Vehicle,
Purpose-Built for 1-2
person, urban trips

Ownership Costs:

$25,000 for vehicle plus
$2,500 for driverless
technology/250,000 lifetime
miles =$0.11/mile

$6,500 for vehicle plus
$2,500 for driverless
technology/250,000
lifetime miles = $0.04/mile

Depreciation

$27,500/vehicle * 5%/yr $9,000/vehicle * 5%/yr

system, advertising costs)

Financing interest cost = $1,375/yr. interest cost = $450/yr.
Insurance $3,000/yr $1,000/yr
Registration, taxes $600/yr $200/yr
Operating Costs:
gas $0.15/mi $0.02/mi
maintenance & repair $0.05/mi $0.02/mi
Overhead costs (wireless
communication, information $1,000/yr $1,000/yr

4 Multiply one-fourth the vehicle mass with an electric drive that uses two-fifths of the energy of current engines to
achieve energy consumption of one-tenth of the general-purpose vehicle.
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We determined the fleet size of small, electric vehicles for serving 1 to 2 occupant trips and the
fleet size of conventional medium-sized sedans to serve trips with 3 or more passengers.
Applying the appropriate costs described above for each vehicle type yields an overall cost for
the combined shared fleet of $0.15 per trip-mile reducing costs by about 60 percent compared
to using all conventional vehicles.

Ann Arbor Case Study

Personal travel costs can be dramatically reduced using shared,
driverless fleets

$0.80
$0.75 M Ownership Cost

$0.70 - M Operating Cost

* Ashared, driverless vehicle fleet

can provide the same mobility as
Reduced personally owned vehicles at far
. 7 less cost

$0.60 -

* Cost/trip-mile could be reduced by

Cost Per Trip-Mile
R v v
o o o
w B v
o o o

|

Reduced 80% compared to a personally
Operating owned vehicle driven 10,000
T and——— ’
Ownership miles/yr
$0.20 - Costs .
) ) $0.15 * Reduced parking costs and the
$0.10 | value of time not spent driving
would further increase these
$0.00 - : I benefits
10,000 mi/yr 15,000mi/yrI Shared Shared

| Driverless  Driverless
1 Vehicles Purpose-Built
Vehicles

Personally Owned
Vehicles

Cost Savings from Parking Fees

The cost of parking a personally owned vehicle in Ann Arbor averages $5 per day (costs vary
depending on location). Parking costs would be saved with the use of a shared, driverless fleet.
Such a fleet would be in use approximately 75 percent of the time, as opposed to personally
owned vehicles that are typically in use just 5 to 10 percent of the time on average and are
parked the remaining 90 to 95 percent of the time.

Time Value Opportunities

In addition to the reduced costs of ownership, operation and parking, driverless vehicles will
free up the travel time that is currently focused on driving and parking the vehicle. While valuing
travel time is far from an exact science, even very low value of time assumptions correspond to
significant consumer value opportunities. For example, a travel time value of just $1.50 per hour
equates to $0.05 per mile ($1.50/hour + 30 miles/hour = $0.05/mile). Moreover, a time value of
just $5.00 per hour is equivalent to $0.17 per mile. To put these valuations in perspective,
consider that the U.S. median income of $50,000 per year equates to $25/hour (40 hours/week
and 50 weeks/year). At this rate, travel time would be valued at $0.85 per mile.
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Ann Arbor Conclusions

A shared, driverless vehicle fleet would provide better mobility experiences at radically lower
cost when compared to personally owned vehicles. Consumers would benefit from increased
spontaneity, door-to-door convenience, more productive and relaxing travel time, more
predictable and shorter travel times, and improved safety. Combining the time value of $0.85
per mile, based on the median income, with the out-of-pocket cost of $0.75 per mile for a
medium sedan driven the median annual distance of 10,000 miles, suggests a cost plus time
value of $1.60 per mile to use a personally owned vehicle. Analysis indicates that using a shared,
driverless, purpose-built fleet instead could reduce this to about $0.15 per mile, representing a
significant consumer and business opportunity.

Opportunity Summary: Shared, Driverless, Purpose-Built Fleets

* Enhanced Value
o More than a factor of 10 improvement compared to personally
owned vehicle

* Enhanced Mobility
o Door-to-door mobility using a vehicle designed for the trip
o No inconvenience or cost for parking

* Enhanced Sustainability
o Greater safety

Less energy

Less emissions

Less congestion

@)
@)
@)
o Better land use

BABCOCK RANCH CASE STUDY: COST COMPARISON TO PERSONAL VEHICLE OWNERSHIP

The Ann Arbor case study indicates that a shared, driverless fleet could provide better mobility
experiences at radically lower cost when compared to personally owned vehicles and that these
results can be extended to other medium-sized U.S. cities. What about smaller urban or
suburban areas? Could the cost savings and increased convenience of the new mobility service
be provided for these communities as well? To find out, a case study was done for the planned
eco-city of Babcock Ranch in southwest Florida.

The city of Babcock Ranch is being built on a former cattle ranch. In 2006, developers Kitson &
Partners purchased the 91,000-acre ranch, selling 73,000 acres back to the state of Florida to
create a nature preserve, and retaining 17,000 acres on which to build an eco-city. When
completed, Babcock Ranch will have a population of 50,000 residents, as well as retail,
commercial, and office space.
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Babcock Ranch, Florida

* 50,000 people at buildout
—20,000 by 2022
* 20 square miles total area, of
which 10 square miles developed
* 115,000 internal trips per day
—2.3 trips per person
* Average trip
—3.5 miles
—25 mph
* 9,800 internal trips during peak
hour

Source: Analysis done for Babcock Ranch by David Plummer & Associates, 2011

Babcock Ranch is envisioned as a “living laboratory,” combining a philosophy of sustainability
with cutting-edge technology to create a highly attractive living environment. Over half of the
17,000 acres will be permanently protected as greenways and open space, and residents will
have access to the adjacent 73,000-acre Babcock Ranch preserve. All commercial buildings and
homes will be certified as energy-efficient and constructed according to Florida Green Building
Council standards. Babcock Ranch plans to be a platform for sustainable clean energy
technology, as well as a proving ground for emerging “smart city” products and services. To that
end, Florida Power & Light has committed to building the nation’s largest solar power facility (75
MW) at Babcock Ranch. In addition, an integrated “smart grid” will provide greater efficiencies
and allow residents and businesses to monitor and control their energy consumption.

Methodology

To evaluate whether there is consumer value to be gained by operating a shared, driverless
vehicle fleet in Babcock Ranch, the following methodology was used:

* Obtained travel data for Babcock Ranch, including number of trips per day, average trip
time, average trip distance, average trip speed, and average number of passengers.

* Used queuing, network, and simulation models to estimate how a system of shared,
driverless vehicles would perform in meeting the demand for daily trips within Babcock
Ranch.

* Determined the number of shared, driverless vehicles needed to ensure adequate
coverage and acceptable wait times during peak periods.

* Once the fleet size was known, available cost estimates of owning and operating mid-
sized vehicles were used to estimate the cost of providing mobility services.
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Trip Data for Babcock Ranch

When fully built out, the population of Babcock Ranch will be 50,000. The city will cover a total
area of 20 square miles (17,000 acres), with 10 square miles retained in the form of parks and
green spaces. The area within which vehicles will travel is therefore the remaining 10 square
miles of developed property.

The analysis assumed that Babcock Ranch residents would use the shared, driverless fleet for
trips taken within Babcock Ranch, and that they might continue to own one car for trips
beginning and ending outside Babcock Ranch. Projected travel data was obtained from an
analysis done by David Plummer & Associates for Babcock Ranch in 2011.> This study estimated
a total of 115,000 internal trips per day at build out, or an average of 2.3 trips per day per
person. The average trip length was estimated to be 3.5 miles with an average vehicle speed of
25 mph.

5 David Plummer & Associates, Inc. “Babcock Ranch Community Development of Regional Impact Question 21.
Transportation Master Traffic Study Update” (July 21, 2011).
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Determining Shared, Driverless Fleet Size

By using the Babcock Ranch trip data combined with modeling of a shared, driverless fleet, the
number of vehicles needed to cover the expected demand can be estimated. Model
assumptions include random origins and destinations within Babcock Ranch, and a circuity
factor of 1.5 applied to the straight-line distance when computing trip lengths. Peak hour trips
were considered when determining the fleet size, as well as customer wait time and total
vehicle utilization.

Results indicate that a fleet of 3,000 to 4,000 shared, driverless vehicles would be needed to
serve a fully developed Babcock Ranch during the peak daily period. With a fleet this size, the
average wait time for travelers would be well under one minute. A customer would always be
close to an empty vehicle. For example, if there were 3,500 vehicles in the fleet, an average of
1,000 vehicles (100 per square mile) would be available at any time. Empty travel distances
would also be very low. Estimates indicate that a shared fleet of 3,500 vehicles would be utilized
70 percent during peak periods, and would average only slightly less throughout the day.

Babcock Ranch Cast Study:
Customer Wait Time is Short, Empty Miles are Low

(1)‘9) 1 Ave.Customer Wait Time .

08 |\ peak period * A shared vehicle fleet
fos of 3,000-4,000 vehicles
%04 1 would be needed to

02 ] serve a fully developed

O.02,500 3,(;00 3,5F(:0 ;,000 4,.’;00 5,(;00 BabCOCk RanCh In the

1377 Ave. Empt:;io::ed Miles peak perIOd

 Average times travelers
10% Peak Period wait for vehicles would
5% | be well under a minute
Ave. Daily
0%

2,500 3,000 3,500 4,000 4,500 5,000
Fleet Size
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Cost Estimate for Shared, Driverless Mobility Service

We estimate the cost for a shared, driverless fleet serving Babcock Ranch assuming that
conventional medium sedans would be used. Therefore, the analysis uses the cost parameters
from Table 1. For the trip characteristics of Babcock Ranch, the overall cost of the shared fleet
would be about $0.46 per mile, assuming a fleet of 3,500 vehicles. With an average trip length of
3.5 miles and 2.3 trips per person per day, this works out to a cost of $3.70 per customer per
day.

Babcock Ranch Case Study:

Cost of mobility service could be as low as $4 per day per customer
or under $2/trip
* Cost parameters used are

those for conventional
medium sedans (Table 1)

» Total fleet costs are $0.45-
Total Cost

554 - $0.50/trip-mile for the range

Shared Fleet Costs

Qg3 - of fleet sizes shown

§$2 | Operating Cost ___—  * Ave.triplengthis 3.5 miles,
kT _ - so with a fleet of 3,500
&1 | Vehicle Cost vehicles, the total cost is

$0 ‘ ‘ ‘ | | about $1.60/trip

2500 3,000 3500 4000 4500 5000 « At2 3 trips/person/day, this
Fleet Size is under S$4/person/day

As with Ann Arbor, scale economies are reached quickly in terms of the number of vehicles
needed and the cost of owning and operating them. Costs are relatively constant once the
number of customers rises above 5,000, and increase very little as the customer base changes
from 5,000 to 1,000. In an area the size of Babcock Ranch, a relatively small population could
therefore be efficiently served by a shared fleet. A shared, driverless fleet would therefore be a
cost-effective transportation alternative well before Babcock Ranch grows to its final size.
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Scale Economies Are Reached Quickly
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Babcock Ranch Conclusions

As with Ann Arbor, the Babcock Ranch analysis concludes that a shared, driverless fleet could
provide improved mobility experiences at a relatively low cost. A shared, driverless vehicle fleet
would provide increased spontaneity, door-to-door convenience, more productive and relaxing
travel time, more predictable and shorter travel times, and improved safety. The shared,
driverless fleet could complement the use of personally owned vehicles, with Babcock Ranch
residents using the new mobility service when convenient. The cost of providing these services
with medium sedans would be about $4 per day per person, or under $2 per trip on average.
Furthermore, as with Ann Arbor, these costs would be considerably lower with purpose-built
fleets tailored to Babcock Ranch trip characteristics.

MANHATTAN CASE STUDY: COST COMPARISON TO YELLOW TAXICABS

The island of Manhattan is home to a population of 1.6 million people living in an area of 23
square miles. Manhattan is one of the five boroughs in New York City, along with Brooklyn,
Queens, the Bronx, and Staten Island. Because parking a car is difficult and expensive, only
about 25 percent of Manhattan residents own a car. Manhattan has one of the world’s most
well developed systems of public and private transportation. The Metropolitan Transit Authority
(MTA) runs bus and subway services throughout Manhattan and the other boroughs. In addition,
there are several types of for-hire car services available, including yellow taxicabs, dispatch cars,
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“black car” services, and limousine services. Finally, residents have access to hourly rental cars
(zZipCar, Hertz on Demand) and traditional rental cars.

Manhattan, New York

[

* 1.6 million people
* 23 square miles

* 410,000 trips per day
— 0.3 trips per adult

—88% of all taxicab trips internal to
Manhattan

aF S W * Average Trip
" 4 -'.-..Manhauan New York_NY
. New York N ‘.'"‘,: _2 mileS
' —11 minutes
—11 mph
—1.4 passengers

* Taxicab Fleet
— 13,000+ vehicles

& o New; York s
4

Sources: 2009 National Household Travel Survey data; 2010 US Census; NYC taxi data; Schaller
Consulting, The NYC Taxicab Fact Book (2006)

A shared, driverless vehicle fleet could compete strongly with the mobility services provided by
yellow taxicabs and, to varying degrees, by buses, the subway, other for-hire car services, hourly
rental cars and personally owned cars. For simplicity, this analysis focuses on comparing the cost
of using a shared, driverless vehicle fleet to the cost of using yellow taxicabs within Manhattan.
Because yellow taxicabs are now required to have GPS on board, excellent information on taxi
trips is available.

Manhattan’s Yellow Taxicabs

There are multiple types of car services for hire in Manhattan. The best-known are the taxicabs,
characterized by their yellow exteriors, their metered fares, and the fact that they can only be
hailed by passengers from the street (i.e., you can’t call a yellow taxicab to come and pick you
up). They are the only type of car service legally permitted to pick up passengers without
prearrangement®. In order to operate a yellow taxicab, an owner must purchase a license from
the city. Only a limited number of these licenses are available (13,237 in 2011).” They are often
called “medallions” because of the metal medallion attached to the hood of a taxicab, indicating
that the car is licensed.

® The Taxi & Limousine Commission (TLC) voted in April 2012 to allow livery cabs to be licensed to make street pick-
ups in the outer boroughs and northern Manhattan where yellow taxicab service is low, a rule scheduled to take
effect in the summer of 2012.

7 Wikipedia, “Taxicabs of New York City”. Accessed June 2, 2012.
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In addition to the yellow taxicabs, dispatch, “black car”, and limousine services exist. For
dispatch car service, a customer can call a central dispatch office and request that a car pick
them up and take them to a specified location. Dispatch offices are in contact with available cars
via radio. These car services range widely in terms of quality of service, price, and types of
vehicles used. Customers using dispatch car services include passengers traveling to and from
the airports, and residents of neighborhoods where yellow taxicabs are hard to find. “Black car”
services are generally fleets of higher quality vehicles that contract with companies to transport
employees occasionally or daily to and from work and the airport. Limousine services are often
used for special events. All in all, there are over 40,000 for-hire vehicles operating in the five
boroughs of New York City, in addition to the 13,000+ yellow taxicabs.®

Methodology

To evaluate whether there is consumer value to be gained by operating a shared, driverless
vehicle fleet in Manhattan, we used the following methodology:

* Obtained taxicab trip data for Manhattan, including number of trips per day, average
trip time, average trip distance, average trip speed, and average number of passengers.

* Used queuing, network, and simulation models to estimate how a system of shared,
driverless vehicles would perform in meeting Manhattan’s daily taxicab trip demand.

* Determined the number of shared, driverless vehicles needed to ensure adequate
coverage and acceptable wait times during peak periods.

* Once the fleet size was known, available cost estimates of owning and operating mid-
sized vehicles are used to estimate the per mile cost of providing mobility services.

* Finally, the estimated cost of providing mobility services were compared to existing
fares charged by taxicabs.

Trip Data for Manhattan

Manhattan residents use taxicabs to get to a number of different destinations each day,
including work, school, home, shopping, entertainment, and restaurants. All in all, taxicabs
account for 470,000 trips per day in the five boroughs,? with 88 percent of these trips internal to
Manhattan (approximately 410,000 trips per day). Analysis of data obtained from FareShareNYC
and the Taxi and Limousine Commission (TLC) was used to determine that during the weekday
peak, over 300 taxicab trips are initiated per minute, with the average trip taking about 11
minutes to cover a distance of 2 miles. The average speed driven is between 10 and 11 mph
depending on time of day, and the average number of passengers per trip is 1.4.%°

Determining Shared, Driverless Fleet Size

By using the taxicab trip data combined with modeling of a shared, driverless fleet, the number
of shared, driverless vehicles needed to cover the demand currently met by yellow taxicabs can
be estimated. Peak hour trips were considered when determining the fleet size, and the
resulting customer wait time and vehicle utilization.

& Schaller Consulting, The NYC Taxicab Fact Book (2006).

? Ibid.

% pata originally accessed at http://faresharenyc.com/data-analysis/, with additional information provided by Jeff
Novich, Charles Komanoff, and Aaron Glazer of FareShareNYC. Additional data subsequently obtained from the Taxi &
Limousine Commission (TLC).
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Results indicate that a fleet of 9,000 shared, driverless vehicles could meet the demand with
much shorter wait times and significantly improved vehicle utilization. Currently, the average
wait time for a passenger hailing a yellow taxicab is 5 minutes. A fleet of 9,000 shared, driverless
vehicles that were centrally coordinated to respond to passengers “hailing” them via their
smartphones, could reduce the wait time to under 1 minute, while increasing the vehicle
utilization.

Shared, Driverless Fleet Performance —
Customer Wait Time, Empty Miles

12 Ave. Customer Wait Time * High customer and vehicle density

1.0 - in Manhattan means a
» 0.8 - Peak Period coordinated system could serve
£ customers with a very short wait
£06 - time and low empty miles
E ——

04 - AM * On average a fleet of 9,000

02 - vehicles could yield (during the

peak period)
0-0 T T T T 1 . .
7,000 8,000 9,000 10,000 11,000 12,000 - wglttt|mes of about 0.6
Fleet Size E)nlln(l:r::ty miles/trip in a
10% - Ave.Empty/Loaded Miles balanced system (5% of 1.9
miles/trip)

Peak Period * Analysis of imbalances
between trip origins and

5% - destinations shows this
Ave. Daily would increase empty miles
to about 11% of loaded miles
0% T T T T 1
7,000 8,000 9,000 10,000 11,000 12,000

Fleet Size

Potential Cost Savings from Shared, Driverless Fleet

Passengers pay on average $5 per trip-mile'’ when riding in a yellow taxicab. This revenue
covers the labor cost of the driver, vehicle ownership and operating costs, and owner income. If
we assume owner profit to be 15 percent, the cost of providing the yellow taxicab service is
approximately $4 per trip-mile.™? In contrast, the cost of providing a similar service via a shared,
driverless vehicle fleet is estimated to be $0.50 per mile.”> These cost savings are the result of
fewer taxis, less empty miles and reduced labor costs of the driver.

" The average fare is $8 plus a 15 percent tip ($1.20) for a total of $9.20 for a 1.9-mile trip. The average price per mile
of the trip is therefore about $5.

12$9.20 minus 15 percent is $7.80 per trip, divided by 1.9 miles per trip for a per trip-mile cost of $4.11.

Bwe assume the shared, driverless fleet uses conventional medium sedans and use the cost parameters in Table 1.
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Cost Savings from Central Coordination

Significant cost savings are possible through improved coordination. Currently, yellow taxicabs
aren’t allowed to provide scheduled or pre-arranged service (dispatch and “black car” services
do this), so all trips are “hailed” from the street. This lack of central coordination results in a
high level of empty miles for taxicabs, in addition to a higher wait time for customers (5 minutes
on average). A fleet of 9,000 shared, driverless vehicles could reduce the wait time to under a
minute and increase vehicle utilization to 70 percent during peak periods.

Cost Savings from Reduced Ownership and Operating Expenses

A fleet of 9,000 shared, driverless vehicles could meet the demand currently supplied by
13,000+ yellow taxicabs. This reduced fleet size results in savings from vehicle ownership costs.
In addition, a more efficiently operated fleet would result in fewer empty miles, thereby
reducing the total operating costs per loaded mile.

Manhattan Case Study:

Shared, driverless fleet would have a cost of about S1/trips
comparedto $7.80 per trip cost of taxi cabs

Shared Vehicle Fleet Size Impacton . ) ]
System Cost * Coordinating the vehicle fleet

$0.60 - with customer demand results in

lower system cost by reducing
$0.50 - both empty miles and fleet size

Total Cost
T while providing much better

. $0.40 - customerservice
i Ownership Cost * Afleet of 9,000 vehicles would
E %0301 / — be over 70% utilized in the
g 6020 - Operating Cost peak period

— have a total cost of about

$0.10 - $1.00/trip compared to
between $7.80 for the
$0.00 : ‘ : : ‘ current taxi system
7,000 8,000 9,000 10,000 11,000 12,000
Fleet Size

Manhattan Conclusions

Manhattan’s yellow taxicabs are rated poorly for quality of service, with passengers giving them
low ratings, compared to other modes of transportation, for ability to get a cab when you want
one, value for money, safety from accidents, driver understanding of directions, and driver
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courtesy.™ A shared, driverless fleet could provide better mobility experiences at radically lower
cost. Significantly reduced wait times can be achieved using central coordination from a dispatch
system accessed via the Mobility Internet. The current per-mile cost for a yellow taxicab is about
$4, compared with an estimated $0.50 per-mile cost of operating a shared, driverless vehicle
fleet of conventional vehicles. And, as with Ann Arbor, the opportunity is significantly greater
with vehicle designs tailored to 1-to-2 passenger trips.

Although the current analysis has focused on yellow taxicabs, these represent only 8 percent of
trips taken by Manhattan residents each day. A convenient and affordable mobility service
would most likely draw passengers from other modes of transportation as well, including buses,
the subway, other for-hire car services, and hourly rental cars.

CONCLUSIONS

By combining five business model and technology enablers (the “Mobility Internet,” self-
driving/driverless vehicles, shared vehicle systems, specific-purpose vehicle designs and
advanced propulsion systems) better mobility experiences at radically lower cost can be
realized in a variety of settings. This mobility system is compelling compared with other modes
of public and private transportation in Ann Arbor, Babcock Ranch, and Manhattan, because of
its potential to be more convenient, more energy and resource efficient, safer, and less costly.
More specifically:

* Shared, driverless vehicle fleets result in greater efficiencies.

* Greater efficiencies result in cost savings.

* Economies of scale are reached quickly.

* Consumers experience greater convenience with a shared, driverless vehicle fleet.
* Results are consistent for a wide range of residential areas.

* Sustainability benefits are substantial with fleets of shared, driverless vehicles.

% Schaller Consulting, The NYC Taxicab Fact Book (2006).
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APPENDIX:

METHODOLOGY FOR MODELING PERFORMANCE AND COST OF A
SHARED, DRIVERLESS VEHICLE FLEET

Introduction

Consider a region such as those in our case studies where most of the trips for work, shopping,
recreation and other purposes are intra-regional. We assume that a shared, driverless vehicle
fleet operates within this region. The fleet operator optimizes the assignment of vehicles to
customers so that low customer wait times are achieved and operational costs are minimized."
Since customers can spontaneously request a vehicle, the operator must control the assignment
of vehicles to customer trip requests in real-time. When a customer requests a shared vehicle
using a smart phone app, the fleet operator will have information on that customer’s current
location, destination, and the vehicle type needed. We assume the customer needs the vehicle
immediately, since this would be the hardest type of travel to accommodate. If a customer
wanted to schedule trips ahead of time, this could also be accommodated, but would only
reduce the costs being calculated here.

As shown in Figure 1, upon receiving the trip request, the fleet operator immediately
determines which vehicle in their fleet could reach the customer first. The operator knows (via
the Mobility Internet) the current location and state of all vehicles, can estimate when vehicles
currently serving trips will complete them, and can estimate when each vehicle could potentially
reach the new customer’s location. The closest vehicle could be one that is currently idle, or, as
shown in the figure, it could be a vehicle currently serving another trip. In either case the
assigned vehicle travels to the new customer as soon possible. Through the Mobility Internet,
the operator keeps the customer fully informed about the assigned vehicle’s current location
and expected arrival time. Note that assigning the closest vehicle to a customer not only
minimizes wait time, but also minimizes empty vehicle miles, thereby minimizing operating costs.
If the fleet operator can forecast travel patterns or if trips are scheduled ahead of time,
customer wait time could be further reduced by pre-positioning vehicles where the operator
predicts that they will be needed.

15 Note that while our discussion focuses on a single vehicle fleet, this doesn’t preclude the possibility that there may
be several competing vehicle fleets in an area.
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Figure 1. Shared, Driverless Fleet Assignment Decisions

We need to estimate the performance of the system (customer wait time). In particular, we
need to calculate how the number of vehicles in a shared fleet and the assignment decisions
impact customer wait time. To provide customers with a better mobility experience than they
currently have, customer wait times must be short. The definition of short depends on the
situation. In our scenarios, Joe in Ann Arbor and Bob in Babcock Ranch have the alternative of
driving their own cars. These are immediately accessible when they are at home, but there may
be substantial walk time to access the cars when they are parked, for example, at a shopping
center. Anne in Manhattan usually has substantial walk and/or wait time when accessing public
transportation or yellow taxicabs. We'll estimate shared vehicle fleet costs assuming that
average wait times (between calling for a vehicle and its arrival) will be 2 minutes or shorter.
This is a fairly stringent standard that will lead to conservative cost estimates.

We also need to estimate the cost of a shared, driverless vehicle system. The primary costs are
vehicle ownership and vehicle operation. Ownership costs include vehicle purchase, registration,
and insurance; operating costs include fuel, maintenance, and repairs. The operating costs will
depend not only on the length of trips served by the fleet, but also on the empty distance
vehicles travel to customer locations.

To estimate system performance and cost, we develop relatively simple models that capture the
key variables: the area of the region, the mean trip length, the mean trip rate and how this
varies throughout the day, mean vehicle speed, the average fixed time needed per trip, the fleet
size, and vehicle cost parameters. Using queueing and network modeling approaches, we
develop an analytical model to relate these key variables to the performance and cost of a
shared, driverless vehicle fleet. In this Appendix, we will describe the development of the
analytical model, show the results of validating it with simulation models, and present the
results from applying this model to the three case studies and to more general situations.

Base Model Definition for Analytical Model
To calculate the performance (i.e., customer wait time) and cost of the shared vehicle system,

we develop two types of models: (a) an approximate analytical model that can be run quickly to
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be used for performing sensitivity analyses, and (b) a simulation model to both validate the
analytical model and handle extensions to our shared fleet system that are difficult to model
analytically.

We define the region being served by the vehicle fleet as a square with area 4, as shown in
Figure Al.

/ﬂ

@ -origin D = destination &= =desiredtrip

Figure Al. Square region with uniformly distributed
trip origins and destinations.

Within this region, trips are requested at an average rate A and occur within a period P (this
could be a peak travel period or any portion of the day you want to analyze). Each trip i has an
origin, O;, a destination D; and a request time ., We make the following simplifying
assumptions about trips:

e Trip origins and destinations are uniformly distributed over region A4;

e Trips are requested at a constant average rate, A, and the time between requests is
exponentially distributed®®;

* Vehicles travel at a constant speed, v; and

* There is one type of vehicle used for all trips.

The shared, driverless vehicle fleet has M vehicles for serving this region. The fleet is operated in
the following simple manner:

* Trip requests are received at random time intervals by a centralized fleet coordinator,
which knows the current location and status of all vehicles.

16 while average trip rates clearly vary throughout the day, assuming an exponential distribution for inter-request
times is quite realistic.
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* When a new request is received, the coordinator scans through all vehicles, both idle
and in-service, and determines which vehicle can reach the requestor first. This vehicle
is assigned to that request.

* When a vehicle completes a trip, if it has been assigned to another trip, it departs
immediately for that trip origin. If it has not been assigned to another trip, it waits at its
current location until another trip is assigned.

* We assume that initially vehicles are randomly scattered over the region. This is a
simplification; in fact, there probably would be multiple parking/maintenance facilities
scattered over the region.

To model the performance of the vehicle fleet, we can think of the fleet as a queueing system
where the vehicles are servers and trip requests are customers. Figure A2 shows how a vehicle
spends its time. The service time in this system does not only include the time that the vehicle is
with the customer (loaded), it also includes the time that the vehicle is driving without any
customer (empty). We define the total service time for each customer as starting when the
vehicle starts traveling to the customer and ending when the vehicle reaches the customer’s
destination and drops them off.

<—— Vehicleidle Vehiclein-service @~——————>
| | Empty travel | Loaded travel |
Vehicle Vehicle Vehicle arrives at Vehicle arrives at
completes trip assignedto trip origin, picks trip destination,
neWtrip Up CUStomer Completestnp

Figure A2. Vehicle service cycle, including both empty and loaded travel.

System performance depends on the average empty and loaded travel distance and time, as
well as the average idle time relative to in-service time, the system’s average capacity utilization.
The average straight-line distance between random origins and destinations in a square of area
A is 0.52VAY we modify this by applying a circuity factor, &, which recognizes that travel is
constrained to a road network. Studies have shown that the road network adds 10 to 50 percent
to straight-line travel distance depending on the type of area. Average loaded distance is

d = average trip length assuming random origins and destinations
=a-052VA . (1)

Loaded travel time is the time that it takes for the vehicle to traverse this distance plus the
average time that the vehicle is stopped at the trip origin for the passenger(s) to board and the
time stopped at the destination for passengers to alight. Let a = the total of boarding time and
alighting time. We assume these are constant for all trips. So,

t; = average loaded travel time

=%+ a. (2)

17 christofides, N. and S. Eilon (1969). An Algorithm for the Vehicle Dispatching Problem. Operations Research
Quarterly, 20, 309-318.
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The average empty distance for each trip is not so easily expressed. A trip request can be
responded to either by a vehicle that is currently idle or by a vehicle that is currently in service
but ending its trip close to the new request. So, this distance actually depends on both the
distribution of idle vehicles over the region and the rate at which vehicles are completing their
trips, as well as the distribution of their destinations.

To develop equations for the average empty travel distance and for the expected time that
customers wait for a vehicle after making a trip request, consider the status of vehicles when a
request is made. As shown in Figure A3, idle vehicles are distributed over the region waiting to
be assigned.

e =arriving request
8= idle vehicle
Figure A3. When a trip requestis made, either
the closestidle vehicle is assigned oran in-
service vehicle if it is completingits trip closer

(i.e.,inthe dashed circle) soon enough to reach
the customerfirst.

When a trip request is made, the closest idle vehicle could be assigned, but since we want to
minimize customer wait time, the system will also consider in-service vehicles that might be
ending their trips close to the customer and that could respond quicker. By “close” we mean
that this in-service vehicle must be completing its current trip closer to the customer than the
nearest idle vehicle (i.e., within the circle shown in Figure A3). The average empty distance and
customer wait time depend on the distance to the closest empty vehicle and the probability, p,
that an in-service vehicle will end its trip closer to the new customer in time to reach the
customer first.

This distance to the closest idle vehicle depends on the number of idle vehicles and where they
are located within the region. Define p as the average capacity utilization of vehicles. Then
(1 — p) is the probability that any individual vehicle is idle at any point in time. With a fleet of
Mvehicles, the average number of idle vehicles when a trip request is made is

I=01-p)M. (3)
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Applying results for the average distance from the closest of many points to a random pointin a
square,™® the expected empty travel distance for the closest idle vehicle is

e =ak /A/I- , (4)

where k = 0.52 if the vehicles are randomly distributed over the area. However, while trip
destinations are random, the process of assigning the closest vehicle to each trip request results
in a significantly non-random distribution of idle vehicles. Based on simulation studies, k = 0.70.

The empty travel time and the wait time customers would experience if an idle vehicle responds
to the trip request is

W, = e_l/v . (5)

However, we must now assess the probability that an in-service vehicle could end its trip closer
(within the circle of radius rin Figure A3) to the new request and arrive at the customer first.
This radius is the straight-line distance to the closest idle vehicle,

r="C/, . (6)

The rate at which trips end within this circle is simply
~ 2
A=Amrs/ (7)

So we can approximate probability P as simply the probability that an in-service vehicle ends its
trip within a distance r of the customer before we expect the closest idle vehicle to reach the
customer. Recognizing that trip completions, like trip requests, will be exponentially distributed,

P~ fOW'/Te_tht =1-—e W (8)

Pis an upper bound of the probability that an in-service vehicle will service the customer,
because a vehicle could land in the region but still not be able to reach the customer before the
closest idle vehicle. Also there is a chance (although it is small for realistic trip rates and vehicle
fleet sizes) that the in-service vehicle may already have its next trip assigned.

Figure A4 shows that the time it takes an in-service vehicle to reach a customer has two
components: t., the time from when the trip request is made until the time the vehicle
completes its current trip; and t,, the time for the vehicle to travel empty to the customer. So,
to be assigned to serve the customer, an in-service vehicle must not only complete its current
trip within r of the customer, but t. + t, must be less than W,.

18 christofides, N. and S. Eilon (1969). An Algorithm for the Vehicle Dispatching Problem. Operations Research
Quarterly, 20, 309-318.
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Figure A4. Two components of time for an in-service vehicle to respond to a customer call.

Given that an in-service vehicle ends a trip within r of the customer in the time interval (0, W;)
after the request is made, the expected time within the interval that it completes its trip is:

t. = p (9)

w ~ 7 S JU—
_ [Vide “dt/ |1 e~ %1(2, + 1)]/
p AP
Assuming that the first in-service vehicle that ends its trip within r of the customer will be the
one assigned (there is a small chance that another vehicle could a short time later end its trip
even closer), the expected empty travel distance for the in-service vehicle would be

eN=a-§r. (10)

The expected empty travel time will be

te =€_N/U. (11)

The expected wait time by a customer served by a vehicle that is in-service when the trip
request is made, given that an in-service vehicle is used, is

Wy=t.+ t,. (12)

Now that we have the expected empty travel distance and customer wait times for either a
currently idle or currently in-service vehicle serving the new trip request, the overall expected
empty travel distance and wait time are just the sum of these weighted by the probability that
each is used:

Starting with our input parameters 4, A, v, M, a, and «, equations (1) through (14) therefore give
a way to estimate the performance of a shared, driverless vehicle fleet. However, using these
equations assumes that we know the system’s capacity utilization. Unfortunately, we don’t. A
basic queueing principle, however, is that in steady-state a queueing system’s average capacity
utilization is its average arrival rate divided by its average service rate, multiplied by the number
of servers. The service rate is the inverse of the average service time S so we can write

33



S

-1 _AS
P = /(M) = /M - (15)

From the point of view of the vehicle fleet, a vehicle is serving a customer once it starts traveling
empty to that customer, so the service time is the sum of the empty and loaded travel times,

§=1D, 4 (16)

v

We can calculate the system’s capacity utilization from (15) and (16) once we know e.
Unfortunately we need the capacity utilization to calculate e. So, we can’t get a closed form
solution for our performance metrics in terms of our input parameters. However, a very simple
iterative procedure can do this. The basic approach in this procedure is:

1. Compute the minimum possible value of p, pjnin, by setting € = 0 and using equations
(15) and (16). Set p = ppmin-

2. Using p, compute W and é using equations (1) through (14), then use the new é to
compute ppext from (15) and (16).

3. If p = ppext, then stop. This value of p is what we want to use in further calculations. If
not, then increment p and return to step 2. However, if p = 1, then stop; the system
doesn’t have enough vehicles.

This procedure works very fast and the converged value of capacity utilization yields the
average empty travel distance via (14) and the customer wait time via (13).

System cost can then be easily calculated. Looking at the cost data in Tables 1 and 2, the various
cost parameters are either time-based (cost per unit time) or distance-based (cost per mile).

Let the input cost parameters be defined as follows:

* ¢, =cost/day for a vehicle (i.e., the sum of the time-based costs in Tables 1 and 2), and
* ¢, =cost/mile for a vehicle (i.e., the sum of the time-based costs in Tables 1 and 2).

Then the total system cost per day would be

TC = ¢,M + cpA(é+d) . (17)
In (17), the lambda should be in trips/day since we are dealing with daily cost.
For comparison with other systems, we’ll often express cost as the cost per trip-mile:

Cost per tripmile = TC/Ad . (18)

Validation using Simulation Model

The base model specified above is approximate. It makes a number of assumptions to simplify
the analysis, including:

* There are always idle vehicles somewhere in the system when a trip request is
received;
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* An in-service vehicle is assigned to a new customer if one completes its previous trip
close to the customer before the closest idle vehicle would be expected to reach the
customer; and

* If an in-service vehicle is assigned to a new customer, it is the first one that is expected
to complete its trip close to the customer.

These are very reasonable assumptions and should introduce only small errors in estimating
customer wait time, empty vehicle miles, and system costs.

Before applying the analytical model to our case studies, however, we want to validate it against
a simulation of shared, driverless vehicle fleet operations that does not make these simplifying
assumptions. The simulation will also assume that trip origins and destinations are randomly
distributed over the square region, but will randomly generate specific origins and destinations.
The simulation model randomly generates trip request times over a period, and, as requests are
received, assigns vehicles to trip requests to minimize customer wait times as described earlier.
That is, when a request is received the model evaluates the expected time when each idle
vehicle could reach the customer and the expected time each in-service vehicle, after
completing its assigned trips, could reach the customer. The vehicle that is expected to reach
the customer first is assigned. The simulation model calculates customer wait times and empty
vehicle miles, and we compare these results to those calculated by the analytical model.

Note that the simulation model takes much longer to run than the analytical model, especially
for values of A that are typical of our case studies. For large values of A and M the simulation
model can take well over an hour to run on a standard laptop computer whereas the analytical
model runs in a fraction of a second.

The graphs in Figure A5 show system performance predicted by the analytical model compared
to the simulation model® for the case where 4 = 100 square miles and A = 1000 trips/hour.
These values might be typical for a small urban area or a portion of a larger urban area in which
a shared vehicle fleet might operate. In all cases we use v=20 mph, a = 1.4, and a = 2 minutes.
The graphs show the results for values of M (vehicle fleet size) between 520 and 1000. With
fewer than 520 vehicles, the capacity utilization approaches 100 percent and the analytical
procedure does not converge. Increasing vehicles beyond 1000 adds cost without improving
performance. These results indicate:

* The analytical model predicts average capacity utilizations, wait times, and total costs
typically within 5 percent of simulated values over a wide range of fleet sizes (30 to 90
percent).

* The analytical model appears to slightly over-predict empty miles per trip at larger fleet
sizes. Empty mile estimates for the two models are within 2 percent over most of the
range in Figure A5, but grow to about 8 percent different for 1000 vehicles.

19 The simulation results are from running the simulation for ten replications of a 10-hour period starting with
randomly distributed vehicles and then running the simulation for a one-hour warm-up period before collecting
statistics.
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Figure A5. Analytical vs. simulation model results (capacity utilization, expected customer wait
time, expected empty travel distance, and cost) for a region with an area of 100
square miles and a trip rate of 1000 trips/hour.

Table Al compares analytical and simulation model results over a wide range of model
parameters. The range tested covers realistic region areas and trip rates that we might expect to
analyze. The table shows the values for the same four model outputs as shown in Figure A5 for
these different parameter values with the percent difference between analytical and simulation
model results in the last four columns of the table. The table shows:

* The analytical model generally gives excellent results: most values are estimated to
within 5 percent of simulation model values (green boxes), with only 6 values out of
200 off by over 10 percent (red boxes).

* Vehicle cost estimates are extremely close to simulated values in all cases.

*  Empty miles are usually extremely close, but the model over-predicts by over 10
percent in one case.

¢ Customer wait times are generally close but the analytical model diverges from the
simulated values by about 10 percent in several cases.

In summary, comparison with simulated values shows that the analytical model can be used
with confidence to analyze shared, driverless fleet performance.
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Table A1l. Comparison of Analytical and Simulation Model Results.

Model Parameters Analytical Results Simulation Results % Difference
Ave. Ave. Total Ave. Ave. Total Ave. Total
Area Wait  Empty Cost/ Wait Empty Cost/ Ave. Empty Cost/
Lambda (sq. Fleet | Cap. Time Miles/ Trip | Cap. Time Miles/ Trip |Cap. Wait Miles/ Trip
(trips/hr)  mi.) Size | Util. (min.) Trip Mile| Util. (min.) Trip Mile | Util. Time Trip Mile
1,000 100 525 83% 3.30 0.84 $0.32| 84% 3.27 0.84 $0.32] 0% 1% 0% 0%
1,000 100 5301 82% 3.22 0.82 $0.32| 82% 3.04 0.81 $0.32 1% 6% 2% 0%
1,000 100 5401 81% 3.03 0.80 $0.32[ 79% 2.88 078 $0.32] 2% 5% 2% 0%)
g 1,000 100 550 79% 2.90 0.78 $0.32| 78% 293 0.78 $0.32] 1% -1% 0% 0%
z 1,000 100 575 75% 2.57 0.72 $0.33| 74% 262 072 $0.33] 2% -2% 0% 0%
ﬁ 1,000 100 600 72% 2.35 0.68 $0.33] 71% 2.51 0.70 $0.33] 2% -6% -2% 0%
1,000 100 650] 66% 2.03 0.61 $0.34] 64% 2.06 0.61 $0.34 3% -2% 0% 0%
1,000 100 7001 60% 1.80 0.56 $0.34| 59% 1.81 0.55 $0.34f 3% 0% 1% 0%
1,000 100 800] 53% 1.53 0.49 $0.36] 50% 1.53 0.48 $0.36] 6% 0% 2% 0%
1,000 100 1,000 41% 1.22 0.40 $0.39] 38% 1.14 0.37 $0.39] 8% 8% 8% 0%
100 100 59] 88% 9.91 2.46 $0.38] 85% 9.48 2.13 $0.37 3%
° 100 100 60l 84% 9.31 2.20 $0.37| 82% 8.23 2.01 $0.37 1%
k4 100 100 65| 75% 7.67 1.88 $0.37| 75% 6.93 1.80 $0.37, 0%)
z 100 100 701 69% 6.63 1.73 $0.38] 66% 5.97 1.67 $0.38 0%
s 100 100 75| 63% 5.90 1.62 $0.38] 63% 5.30 1.53 $0.38 1%,
E 100 100 80l 59% 5.34 1.52 $0.39] 57% 4.88 1.44 $0.39] 3% 9% 5% 0%
2 100 100 90| 52% 4.61 1.37 $0.40| 50% 4.32 1.31 $0.40| 3% 7% 5% 1%,
S 100 100 100] 46% 4.09 1.25 $0.42| 45% 3.77 1.18 $0.41} 3% 9% 7% 1%
100 100 110 41% 3.73 1.16 $0.43] 39% 3.59 1.11 $0.43] 4% 4% 5% 0%
100 100 150 29% 2.89 0.93 $0.50] 29% 2.80 0.90 $0.50] 3% 3% 3% 0%
10,000 100 4,600 91% 1.49 0.38 $0.29] 91% 1.62 0.39 $0.29] 0% -8% -2% 0%
® 10,000 100 4,700 88% 1.32 0.36 $0.30] 89% 1.52 0.37 $0.30 0% -5% 0%
ﬁ 10,000 100 4,800 86% 1.20 0.34 $0.30| 86% 133  0.35 $0.30 0% -9% -3% 0%)
- 10,000 100 5,000 83% 1.03 0.30 $0.30] 83% 1.15 0.32 $0.30 0% -4% 0%
5 10,000 100 5,250 78% 0.90 0.27 $0.30| 78% 0.97 0.28 $0.30] 1% -8% -3% 0%
g 10,000 100 5,500 74% 0.80 0.25 $0.31] 74% 0.88 0.26 $0.31] 0% -9% -4% 0%
2 10,000 100 6,000 68% 0.68 0.22 $0.32| 67% 0.72 0.22 $0.32 1% -6% -3% 0%
;—:D 10,000 100 7,000 58% 0.55 0.18 $0.33[ 57% 0.56 0.18 $0.33] 2% -2% -1% 0%
10,000 100 8,000 51% 0.47 0.15 $0.35| 49% 0.47 0.15 $0.35| 2% 0% 1% 0%
10,000 100 10,000 40% 0.38 0.13 $0.39] 39% 0.37 0.12 $0.39] 4% 4% 4% 0%
1,000 25 290] 83% 2.22 0.55 $0.34] 83% 2.12 0.54 $0.34 0% 4% 1% 0%
1,000 25 3001 80% 2.02 0.52 $0.34] 80% 2.06 0.53 $0.34 0% -2% -2% 0%
@ 1,000 25 310 77% 1.83 0.49 $0.34] 77% 1.85 0.49 $0.34 0% -1% -1% 0%
8 1,000 25 325 73% 1.65 0.46 $0.34] 73% 1.66 0.46 $0.34 0% 0% 0% 0%
§ 1,000 25 350 67% 1.42 0.42 $0.35| 68% 1.46 0.42 $0.35| -1% -3% -1% 0%
E 1,000 25 400] 58% 1.16 0.36 $0.37| 58% 1.25 0.37 $0.37} -1% -7% -4% 0%
‘_E“ 1,000 25 5001 46% 0.90 0.29 $0.40[ 45% 0.93 029 $0.40] 1% -2% -1% 0%
“v 1,000 25 600] 38% 0.77 0.25 $0.43| 37% 0.77 025 $0.43] 3% -1% 0% 0%
1,000 25 800 28% 0.61 0.20 $0.50 27% 0.61 0.20 $0.50] 3% 0% 1% 0%
1,000 25 1,000 22% 0.53 0.17 $0.58] 21% 0.51 0.17 $0.57 4% 3% 3% 0%
1,000 400 9501 87% 5.59 1.38 $0.31] 86% 5.68 1.38 $0.31} 1% -2% 0% 0%
1,000 400 975 85% 5.06 1.30 $0.31] 83% 4.94 1.29 $0.31} 2% 2% 1% 0%)
2 1,000 400 1,000 82% 4.63 1.24 $0.31 80% 4.50 1.22 $0.31 3% 3% 2% 0%
3 1,000 400 1,050} 78% 4.00 1.13 $0.31 76% 3.98 1.12 $0.31 2% 0% 1% 0%
§ 1,000 400 1,100} 74% 3.59 1.05 $0.32| 72% 3.67 1.05 $0.31} 2% -2% 0% 0%
: 1,000 400 11,2001 67% 3.03 0.93 $0.32| 65% 3.06 0.93 $0.32] 3% -1% 0% 0%)
20 1,000 400 1,250 64% 2.85 0.88 $0.33| 62% 275 0.85 $0.33] 3% 1% 4% 0%
3 1,000 400 1,300] 62% 2.68 0.84 $0.33] 60% 2.69 0.83 $0.33] 3% 0% 1% 0%
1,000 400 1,400} 57% 2.43 0.77 $0.34] 55% 250 0.78 $0.34] 4% -3% -1% 0%
1,000 400 1,500 53% 2.24 0.72 $0.35| 51% 214 0.69 $0.35| 4% 5% 5% 0%
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Use of Models for Case Studies

Earlier sections of this document discussed the case studies to which we applied this basic
model. These case studies examined the performance of a shared, driverless vehicle fleet as an
alternative for personally owned vehicle trips within the urban area of Ann Arbor, Michigan and
the proposed eco-city of Babcock Ranch, Florida, and as an alternative for yellow taxi trips
within Manhattan, New York. The basic data used for these analyses was discussed earlier. This
data was used to calculate parameters for the base model as shown in Table A2. Cost data used
is shown in Tables 1 and 2 in the main body of the report. We will go into a little more detail on
the Ann Arbor case study here.

Table A2. Case Study Model Input Data
Case Studies

Ann Arbor Babcock Ranch Manhattan
average average average
parameter | peak period daytime | peak period daytime | peak period daytime
Area, A (square miles) 128 128 20 20 12 12
Trip request rate, /l(trips/hour) 55,000 44,000 9,800 9,500 26,000 21,000
Period length, P (hours) 1 12 1 12 1 18
Vehicle speed, v (miles/hour) 30 30 25 25 10 11
boarding plus alighting time, g (minutes) 5 5 5 5 2 2
circuity factor, o 1.0 1.0 1.4 1.4 1.1 1.1

Data from the 2010 Census and the 2009 National Household Travel Survey were used to study
the opportunity for a shared, driverless vehicle fleet to serve local Ann Arbor trips instead of
privately owned vehicles. As discussed in the text, the analysis focused on the 90 percent of
vehicles that are driven less than 70 miles per day, which was 120,000 vehicles on a typical day.
The Ann Arbor urban area is 128 square miles and we assume that these vehicles were used for
trips within this region. These vehicles were responsible for 528,000 trips per day, for an
average of 4.4 trips per vehicle per day. These internal trips averaged 5.8 miles in distance and
had an average speed of 30 mph. The pattern of vehicle usage throughout a typical weekday is
shown in Figure A6. Most vehicle trips are made in the 12-hour period from 7am to 7pm, so
approximating that all trips occur in this period, the average trip rate is 528,000 trips/12 hours =
44,000 trips/hour. The evening peak hour is about 25 percent above the average, so a peak trip
rate is about 55,000 trips/hour. The circuity factor is set at 1.0 so that the average trip length
equals the observed 5.8 miles.

Boarding and alighting times are uncertain. In Manhattan, taxi boarding and alighting is fairly
quick, so 2 minutes was used in this case study. However, in less dense settings where we are
considering a shared, driverless fleet as an alternative to personally owned vehicles, a
somewhat longer time for boarding and alighting seems reasonable. We assume 5 minutes for
the total boarding and alighting time in the Ann Arbor and Babcock Ranch cases.
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Figure A6. Vehicle Use by Time of Day for Privately Owned Vehicles on Weekdays
in Ann Arbor Area-2009 NHTS data

Figure A7 shows the performance and cost for a shared, driverless fleet serving these Ann Arbor
trips. The left chart shows peak period and average daily wait time and empty miles. In the peak
period a fleet of at least 16,000 needs to be in operation to meet demand. Customer wait times
are quite sensitive to fleet size at very high utilizations, so using a slightly larger fleet of 18,000
vehicles (87 percent utilization in the peak period) yields an average customer wait of about
one-third of a minute and an average empty travel distance of less than 0.20 miles. An 18,000-
vehicle fleet would yield average wait times and empty distance over the entire day of 0.2
minutes and 0.1 miles per trip.

The average cost per trip-mile over the day for an 18,000 vehicle fleet would be $0.41.
Comparing the cost graph to the wait time and empty mile graph shows that cost is relatively
insensitive to the size of the fleet. Total costs increase by about 10 percent if the fleet is
increased from 13,500 to 21,000 vehicles. While ownership costs clearly increase with fleet size,
operating costs decrease as empty miles come down. On the other hand, wait time performance
is very sensitive to fleet size. As mentioned earlier, a fleet of less than 16,000 vehicles would not
even be able to meet peak period demand, so performance would be unacceptable with a fleet
smaller than this. Above 16,000 vehicles, peak period wait times come down rapidly even
though costs only increase modestly to achieve this performance. So, sizing the fleet at 18,000
vehicles or slightly more makes sense to provide adequate service at reasonable cost.

39



Shared Vehicle Fleet Size Impacton Ave.

. . . Shared Vehicle Fleet Size Impact on
Customer Wait and Empty Vehicle Miles

System Cost
0.7 - - 0.60
Ave $0.50 -
‘\ Peak
0.6 - \‘ . 0.50
\ $0.40 - __//
\ Total Cost
05 - Customer
\
\ Wait Time - 0.40
04 - L@ $0.30 -
=1 K] i
-§ 0.30 s & Operating Cost
0.3 - =
E $0.20 -
0.20 ‘g‘ Ownership Cost
0.2 - S
$0.10 -
01 4 0.10
Empty Vehicle Miles/Trip
0.0 ; ; ; 0.00 $0.00 ‘ ‘ ; ‘
13,000 15,000 17,000 19,000 21,000 13,000 15,000 17,000 19,000 21,000
Fleet Size Fleet Size

Figure A7. Shared fleet performance and cost for Ann Arbor Case Study.

The customer wait time and empty distance performance shown in Figure A7 may seem
unrealistic. How can a shared fleet get a vehicle to a customer spontaneously making a trip
request with so little wait time? To answer this question, we need to think about where vehicles
are when a customer requests a trip. In the peak period, the 18,000 vehicles are 87 percent
utilized. That means that 13 percent of the vehicles (over 2,300 vehicles) are idle. With 2,300
vehicles spread over 128 square miles, we have 18 vehicles per square mile. In addition, there
are almost 1,000 vehicles per minute that are completing trips and are available to serve
customers. Therefore, there are a lot of vehicles available to serve trips even in a peak period.

Figure A8 shows a snapshot of vehicle locations when a customer requests a trip during the Ann
Arbor peak period from a simulation of the 18,000 vehicle shared fleet. The figure shows the
customer location and the locations of idle vehicles when the request is made. Note that the
locations of idle vehicles are not quite as smoothly distributed as one might expect. This is
because the vehicle assignment process leads to some non-randomness in these locations. In
fact, the customer in this case appears to be located in an area somewhat sparsely populated
with idle vehicles. There are about 3,100 idle vehicles at the time represented in this figure (an
above average amount), with the closest one being 0.34 miles from the customer. In addition,
there is an average of almost 10 vehicles per minute completing trips in each square mile that
could also potentially serve this customer. In this particular case, the closest idle vehicle can
reach the customer first, so the customer waits 0.7 minutes for a vehicle. The intuition here is
that with the large number of idle and soon-to-be-available in-service vehicles per square mile,
it would be surprising if average wait times were not small.
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Figure A8. Location of idle when a customer places a trip requestin the
Ann Arbor peak period.

This customer experiences about twice the average peak period wait time. This raises the
guestion about wait time variation. Although the average wait time is short, are there a
significant number of customers that have very long wait times? Simulation analyses have
shown that the standard deviation in wait time is 0.7 to 0.9 times the mean wait time and the
95th—percentile wait is less than 1 minute in the Ann Arbor case. So, the longest wait times are
not that long.”

The above analysis has shown that the cost of a shared vehicle fleet is low assuming that all car
trips internal to Ann Arbor were made using the shared fleet. What if only a portion of these
trips use the shared fleet? Also, we’ve assumed a single fleet. What if we have fleets of
different types of vehicles for different trip needs? In either case, the trip demand rate would be
well below the level assumed in this analysis. How would this change overall cost?

We did a sensitivity analysis on average daily trip demand rate, varying it from 50 to 50,000 trips
per hour. At each demand rate, fleet sizes were set so that average customer wait times were 1
minute. Figure A9 charts the resulting cost per trip mile as a function of the demand rate.
System cost turns out to be very insensitive to the demand rate. As the trip rate decreases from
50,000 trips per hour to 5,000 trips per hour, cost per mile increases by only 7 percent. However,
when the trip rate falls below 1,000 trips per hour, costs start escalating fast.

The intuition behind this is shown by what happens to capacity utilization in the chart on the
right. When the trip rate is between 5,000 and 50,000 trips per hour, an average wait time for 1
minute can be achieved while keeping capacity utilization at 85 percent or above. However,
maintaining this average wait time with lower trip rates requires substantial excess vehicles
causing ownership cost to escalate significantly. Hence, scale economies for operating a shared

20 What is an acceptable customer wait time is an important question for operating a shared fleet. A wait time of
several minutes may be acceptable if the customer is informed of the expected arrival time of the vehicle, with
updates on the vehicle’s location as it approaches. In modeling the system, we have aimed to achieve very short
average wait times in order to be conservative —i.e., this leads to a relatively higher shared fleet cost.
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fleet set in relatively quickly, at about 500 to 1,000 trips per hour for an Ann Arbor type area.
This has significant implications for implementing shared fleets and for operating shared fleets

of multiple vehicle types.
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Figure A9. Sensitivity of total shared fleet cost and capacity utilization to trip rate.

Fleet sizes set so that average customer wait times are one minute.

The major modeling assumptions that we make are:

1.
2.
3.

Trips occur within a square region.

Origins and destinations are uniformly distributed over the region.

Trip requests have a constant average rate and inter-request times are exponentially
distributed.

These are all simplifying assumptions that have varying impacts on the attractiveness of a
shared vehicle fleet. Assuming a square region as opposed to a more realistic shape with the
same overall area has very little impact on the results, based on simulation studies. Likewise, the
assumption of exponentially inter-request times is fairly realistic in periods where the average
trip request rate is constant.

The assumption of a constant average rate is a more critical assumption; as shown in Figure A6,
the trip rate is far from constant over the course of a day. To some degree, this can be
addressed by applying the model to short periods of say 1 to 4 hours over which the average
rate is fairly constant and then aggregating the results. To a degree this is what we have done in
the case studies by doing a separate analysis for the peak period versus the overall daily average.
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By far the most critical assumption is the second one. Assuming that origins and destinations are
uniformly distributed over the entire region implicitly assumes that the number of trip origins
and destinations are roughly in balance in any portion of the area. So vehicles generally don’t
have to be moved far after completing their trips. This assumption also implies that at any point
in time the next trip is equally likely to be anywhere within the region. This makes responding to
trip requests difficult — vehicles can’t be moved to where they are likely to be used next because
you don’t know where that is. So, customer wait times are likely to be at their highest in this
case. By assuming uniformly distributed origins and destinations, this analysis may result in
higher expected wait times, but lower empty miles than situations where origins and
destinations are imbalanced.

Additional analyses of cases where trip origins and destinations are imbalanced are required.
For example, analyses of cases where more trips start in one place and more trips end in
another at a given time of day, such as the morning rush hour when trips start in residential
areas and end in commercial or industrial areas. In the Babcock Ranch case study, the potential
imbalances in trips were analyzed and these increased empty vehicle miles to 20 percent of
loaded miles from the 5 percent that would be expected if origins and destinations were
balanced. This increased overall cost for the shared fleet by 10 percent.

In addition to added cost, imbalances in trip origins and destinations require more sophisticated
methods for moving vehicles after they have completed trips. That is, by collecting data on
where imbalances in trip origins and destinations exist, vehicles can be pre-positioned after
completing trips to areas where you expect them to be needed. This incurs more extra empty
miles than you would need in a balanced situation, but this pre-positioning allows customer wait
times to be reduced.

Summary

In this Appendix, we described the methodology used to calculate performance (customer wait
time) and cost for a shared, driverless vehicle fleet. We developed two types of models: an
approximate analytical model that could be run quickly to develop sensitivity analyses, and a
simulation model to both validate the analytical model and estimate extensions to our system
that were difficult to model analytically. When comparing results from the analytical and
simulation models across a wide range of parameters, we found that the analytical model could
be used with confidence to estimate performance and cost of the shared, driverless vehicle fleet.
We then presented details of how the models were used in our case studies, with a focus on
Ann Arbor. We described the sensitivity analyses undertaken to test our results, and found that
the results were robust. Finally, we examined the major simplifying assumptions made in the
models, and determined that they were all reasonable, although additional analysis of cases
where trip origins and destinations are imbalanced is desirable.
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